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A Review of the Fractal Image Coding Literature

Brendt Wohlberg and Gerhard de Jager

Abstract—Fractal image compression is a relatively recent compression became a practical reality with the introduction
technique based on the representation of an image by a con-py Jacquih of the Partitioned IFS (PIFS) [3, ch. 2], which
tractive transform, on the space of images, for which the giftars from an IFS in that each of the individual mappings

fixed point is close to the original image. This broad principle . S
encorﬁpasses a very wide va?riety of goding Scheme; maﬁy ofperates on a subset of the image, rather than the entire image.

which have been explored in the rapidly growing body of Since the image support is tiled by “range blocks”, each of
published research. While certain theoretical aspects of this which is mapped from one of the “doma&ihlocks” as depicted

representation are well established, relatively little attention jn Figure 1, the combined mappings constitute a transform on
has been given to the construction of a coherent underlying the image as a whole. The transform minimising the collage

image model which would justify its use. Most purely fractal- e . . 2
based schemes are not competitive with the current state of MO within this framework is constructed by individually

the art, but hybrid schemes incorporating fractal compression Minimising the collage error for each range block, which
and alternative techniques have achieved considerably greater requires locating the domain block which may be made closest

success. This review represents a survey of the most significantto it under an admissible block mapping. This transform is

advances, both practical and theoretical, since the publication in then represented by specifying, for each range block, the

1990 of Jacquin’s original fractal coding scheme. . . : .Y ; !
identity of the matching domain block together with the block

Index Terms—Image coding, fractals mapping parameters minimising the collage error for that
block. Distances are usually measured by the MSE (Mean-
. INTRODUCTION Squared Error), equivalent to the distance derived fromithe

'pner product [1, pg. 133], since optimisatioof the standard

The fundamental principle of fractal coding consists . A .
Pck mappings is simple under this measure [3, pp. 20-21].

the representation of an image by a contractive transform
which the fixed point is close to that image. Banach'’s fixe
point theorem guarantees that, within a complete metric spa e oo
the fixed point of such a transform may be recovered k
iterated application thereof to an arbitrary initial element ¢
that space [1]. Images are represented within this framewq - .
by viewing them as vectors [2] [3, ch. 7] within a Hilbert 1 J .
space, the metric being derived from the inner product v,
the norm [1, pg. 129]. Encoding is not as simple, sin
there is no known algorithm for constructing the transforn
with the smallest possible distance, given the constraints
the transform, between the corresponding fixed point and the N _
image to be encoded. The usual approach is based on the P?Qgﬁ’g”e%".ﬂﬁws‘i (Sgr;?;'ncagﬁﬁ’;’f"
collage theorem (see Section V-A) which provides a bound
on the distance between the image to be encoded and the
fixed point of a transform, in terms of the distance betwed: 1. ©One of the block mappings in a PIFS representation.
the transform of the image and the image itself. A suitable, o ]
although suboptimal, transform may therefore be constructed! "€ fundamental principle of fractal coding clearly leaves
as a “collage” or union of mappings from the image to itse|ﬁon3|d§rable I_atltude in the design of a_partlcular implementa-
a sufficiently small “collage error” (the distance between tH&n- Within this broad framework, the differences between the
collage and the image) guaranteeing that the fixed point @ﬁjor|ty of eX|§t|ng fracta! coding schemes may be classified
that transform is close to the original image. into the following categories:

In the original approach, devised by Barnsley, this transforme The partition imposed on the image support by the range
was composed of the union of a number of affine mappings on blocks.
the entire image - an Iterated Function System (IFS) [3, ch. 2]¢ The composition of the pool of domain blocks.
[4]. While a few impressive examples of image modelling were « The class of transforms applied to the domain blocks.
generated by this method (Barnsley’s fern [4] [5, pg. 256], for « The type of search used in locating suitable domain
example), no automated encoding algorithm was found. Fractal blocks.

B. Wohlberg was with the Digital Image Processing Laboratory, Electrical “Note that there is an error with respect to a contractivity criterion [6, pp.
Engineering Department, University of Cape Town, South Africa. He is nog07-208] in Jacquin’s early work.
with Los Alamos National Laboratory, Los Alamos, NM 87545, USA. G. de 2The names of these blocks are derived from their roles in the mappings.
Jager is with the Digital Image Processing Laboratory, Electrical Engineeriftpte, though, that these labels are reversed by Barnsley [7, pg. 181].
Department, University of Cape Town, Rondebosch 7701, South Africa. 3Optimisation with respect to the sup norm has also been considered [8].



« The representation and quantisation of the transforevels of different blocks, allocating few bits to blocks with
parameters. little detail and many to detailed blocks.

There are unfortunately very few theoretical results on which Fractal coding based on the standard block transform, in
design decisions in any of these aspects may be based, g@ftrast, is not capable of such adaptation, representing a
choices are often made on a ratlset hocbasis. In addition, Significant disadvantage of this type of block partition for frac-
these categories are not independent, in the sense that @hyoding. This deficiency may be addressed by introducing
comparative analysis of coding performance between differéiaptivity to the available block transforms as described in
options in one of these categories is usually contingent on tRection 11I-B, but the usual solution is to introduce an adaptive
corresponding choices in the other categories; a meanind?@i‘lrtition with large blocks in low detail regions and small
comparison between the relative merits of particular choicBcks where there is significant detail. There is, of course, a
in each category is consequently very difficult. This review {§ade-off between the lower distortion expected by adapting the
therefore intended primarily as an overview of the variety dfartition to the image content, and the additional bits required
schemes that have been investigated, although brief comg8rSPecify the partition details.
isons are made where possible. Details of the more theoretical
aspects of fractal compression, such as the collage theorem =
and convergence conditions, are presented where appropriate, ‘
and the review is concluded with a wavelet based analysis of : I
fractal compression, and a comparison of the performance of H e
the most effective fractal coding based compression algorithms
in the literature. um
While fractal coding of colour images [9] [10] and video =
[11] [12] [13] have been investigated, space limitations neces-

. - . . . a) Fixed block size b) Quadtree
sitate the restriction of the scope of this review to the coding
of greyscale images (all of which may be assumed to have ﬁ L]
8 bits/pixel). Since publications responsible for introducing R

new concepts are usually cited in derived work, we have in ]
some cases referenced the more recent or easily accessible ]
work. In addition to the proceedings [14] [15] of the 1995 }—r

NATO conference on the subject, of which many of the papers

are referenced in this review, there are currently three books [T H ‘ L
devoted entirely to this subject. The book by Barnsley and -
Hurd [7], the first on the subject, reveals relatively little ¢) Horizontal-Vertical d) Irregular partition

practical detail. The book edited by Fisher [3] contains twlg_:)i »  Rightangled rande partition schemes
introductory chapters and a collection of significant work by as « 9 9 g9ep '
number of authors, while the recent book by Lu [16] combines

introductory material with an in-depth discussion of many Quadiree

aspects of fractal coding. -~ _

The quadtree partition (see Figure 2b) employs the well-
known image processing technique based on a recursive
splitting of selected image quadrants, enabling the resulting

The first decision to be made when designing a fractafrtition to be represented by a tree structure in which
coding scheme is in the choice of the type of image partitic®#®ch non-terminal node has four descendents. The usual top-
used for the range blocks. Since domain blocks must Bewn construction starts by selecting an initial level in the
transformed to cover range blocks, this decision, together wifige, corresponding to some maximum range block size, and
the choice of block transformation described later, restrictgcursively partitioning any block for which a match better
the possible sizes and shapes of the domain blocks. A wid@n some preselected threshold is not found [3, ch. 3] [16,
variety of partitions have been investigated, the majority beifp- 93-105] [21] (or more efficiently, by deciding whether to
composed of rectangular blocks. split a block by examining the variance of its pixels [16, pp.

105-106] [22]). The alternative bottom-up construction begins
] _ with a uniform partition using the smallest block size, and
A. Fixed size square blocks then proceeds to merge those neighbouring blocks for which a

The simplest possible range partition consists of the fix¢aore efficient representation is provided by the resulting larger
size square blocks [17] [18] [19] depicted in Figure 2a. Thiglock one level up the quadtree [16, pp. 93-105] [23]. Compact
type of block partition is successful in transform codingoding of partition details is possible by taking advantage of
of individual image blocks since an adaptive quantisatiorthe tree structure of the partition.

mechanism is able to compensate for the varying “activity” Jacquin’s original scheme [24] [25] [26] used a variant
of the quadtree partition in which the block splitting was

4Such as implemented in the JPEG standard [20]. restricted to two levels. Instead of automatically discarding

[1. PARTITION SCHEMES



the larger block prior to splitting it into four subblocks if
an error threshold was exceeded, it was retained if additional
transforms on up to two subblocks were sufficient to reduce
the error below the threshold.

C. Horizontal-vertical
The Horizontal-Vertical (HV) partition [3, ch. 6] [5, app.

A] [27] [28] (see Figure 2c), like the quadtree, produces a @) Triangular (3-side split) b) Triangular (1-side split)
tree-structured partition of the image. Instead of recursively

splitting quadrants, however, each image block is split into @

two by a horizontal or vertical line. Splitting positions may iy

be constructed so that boundaries tend to fall along prominent
edges [3, pg. 120], or based on the accuracy of approximation ]
by constant pixel values in each of the new blocks created by

] [
| |
nstan pix | s createc IR P
a particular split [28]. Compact coding of the partition details, JT y i

similar to that utilised for the quadtree partition, is possible.

c) Delaunay triangulation d) Polygonal

D. Irregular regions . . "
9 9 Fig. 3. Triangular and polygonal range partition schemes.

Atiling of the image by right-angled irregular-shaped ranges
may be constructed by a variety of merging strategies on an
initial fixed square block [29] [30] [31] [32] (see Figure 2d)G. Comparison

or quadtree [33] partition; chain codes allow the range shapesrhe simplest partition (quadtree) was found to provide the

to be coded efficiently. best rate distortion results in a comparison of polygonal,
HV, and quadtree patrtitions [40]. An independent comparison
E. Polygonal blocks between the quadtree and HV partitions, in contrast, found the

HV partition to be superior [45], while irregular partitions have
een found to outperform a fixed square block partition [29]
] as well as a quadtree partition [30] [33]. A disadvantage

8f partitions which are not right-angled is the interpolation
e . : ; .
éﬁqwred in performing the block transforms when there is

. . . N0 simple pixel-to-pixel correspondence between domain and
a new vertex is created on each of the sides of an existi pie p P P

n

triangle, or by a 1-side split [34] [35] in which an existingra%Ige blocks.

triangle is split into two by inserting a line from a vertex of

the triangle to a point on the opposite side. An alternative

triangular partition is based on@elaunay triangulation36] The type of block transform selected is a critical element of

of the image, which is constructed on an initial set of “seed fractal coding scheme since it determines the convergence

points”, and is adapted to the image by adding extra seBgpperties on decoding, and its quantised parameters comprise

points in regions of high image variance [37] [38] [39]. the majority of the information in the compressed representa-
Polygonal partitions have been constructed by recursiien. A distinction is made here between transforms operating

subdivision of an initial coarse grid by the insertion of lin@n the block support (“geometric” transforms in Jacquin’s

segments at various angles [40] (see Figure 3d), as welltggninology [26]) and those operating on the pixel values

by merging triangles, in a Delaunay triangulation, to forrftermed “massic” transforms by Jacquin).

quadrilaterals [41].

A number of different constructions of triangular partition
(see Figures 3a-3c) have been investigated. Starting by s
ting the image into two main triangles by the insertion
a suitable diagonal, progressively smaller triangles may
placed where necessary by a 3-side split [5, app. A] in whi

IIl. BLOCK TRANSFORMS

A. Block support
F. Overlapped blocks The permissible transforms on the block support are re-

Overlapping range blocks have been used to reduce bIoéE—iCted by the bl_oclc; pat;tition sch:me, since %?mim block
ing artifacts, without a corresponding improvement in MSEUPPOItS are required to be mapped onto range block supports.

within a quadtree partition [42], and with multiple domain 1) Rectangular blocks:The block support transform for

transforms (such as those described in Section 11I-B.4) ffrctangular blocks may be separated into an initial spatial
a fixed block size partition [43]. A more complex form Of_contractlon followed, for square blocks, by one of the square

block overlapping, but with a fixed block size range partitior{,sql_r?]etry otpelrano?s. i fd i introduced by J :
provided improved MSE and subjective quality [44]. Thes € slpa Iat contrac II(Im N lprga:jns a§t mbrq uced by ?cr:]fum
techniques, while promising, have been overtaken to a la 1is almost universally applied, despite being inessential for
eXt.ent by. develqpments in wavelet domain fractal COdIn9'5The block isometries are considered to be block support transforms here,
reviewed in Section IX. in contrast to Jacquin’s usage.



the contractivity of the image map as a whole [6] [16, pp. 12@omain pool constructed so that every domain block contains
129] [27]. While contraction by a factor of two in width andan integer number of range blocks, and spatial contraction by
height is standard, smaller factors have also been considepéel| averaging [3, pg. 160].

[46], and increasirfythis to a factor of three has been found 2) Frequency domainSelective manipulation of the block

to improve decoder convergence [48]. Contraction is usuabypectral contents is allowed by the transform [49] [58] [59]
achieved by the averaging of neighbouring pixels, which may

. o A : 0O 0 ... b
be improved by the addition of an anti-aliasing filter [49]. The %0 w0 bo
alternative of decimating by discarding pixels [3, pg. 141]is pfy = 1 0 01 s Tl cus b; ’

slightly faster, but results are inferior to those obtained by
averaging [27].

The symmetry operations utilised by Jacquin are widely (3)
used as a means of enlarging the domain pool. While soifyeere C' is the Discrete Cosine Transform (DCT) matrix.
authors have reported similar frequency of usage for all of thglaptivity to block activity levels may be achieved by varying
isometry operations [50] [51], others have presented evideribe number ofa; and b; that are individually specified, the
to the contrary [16, pp. 123-125] [52]. These conflictingemainder being set to zero. This hybrid scheme constitutes a
results are possibly due to the sensitivity to design choic&gnsition between conventional fractal coding and transform
in each of the categories listed in the introduction. Despif®ding, being equivalent to the former when all of theare
their widespread usage, there is evidence that their applicat®sit/al, and only, is non-zero, and to the latter when a full
is counter-productive in a rate distortion sense [51] [53] [54fet of b; values is utilised, and all of the; are zero.

[55]. Affine transforms other than the isometries have alsoAlternative hybrids between fractal and transform coding
been considered [16, pp. 129-131], and generalised squag¥e been constructed by DCT coding of the error image
isometries constructed by conformal mapping from a squdisulting from fractal coding [19] [60].

to a disk are reported to be capable of improved performance3) Multiple fixed blocks:Instead of the usual single fixed

over the true square isometries [56]. block 1, multiple fixed blocksv; may be employed in the
2) Non-rectangular blocksAn affine mapping on the im- transform
age support is sufficiently general to transform domain trian- Mu=au+» b 4

gles to range triangles in a triangular partition. These affine

transforms are determined by requiring that the transformé@dthogonalisation of the domain block term with respect to the
vertices of the domain blocks match those of the range blockised block terms may be achieved by projecting the domain
Depending on their structure, polygonal blocks may requitdock perpendicular to the subspace spanned by the fixed
transforms more general than affine in transforming domailomain blocks [3, ch. 8].

to range blocks [41]. Transform (1) may be extended by including fixed blocks
with constant gradient in the vertical and horizontal directions
respectively [61] [62]. Further extensions [18] [51] [63] to
“order 2 polynomials” by including blocks with quadratic

~ The simplest intensity transform in common use is th@hy and to “order 3” with the addition of cubic form blocks
introduced by Jacquin have also been considered. The “order 2” transform was found

B. Block intensity

Mu = su+ol, 1) to be best, in a rate distortion sense, in experiments with
_ _ ~limited domain searching [64].
wheres ando are variable scaling and offset coefficientsis If all of the a; in the frequency domain transform (3)

a suitable vector representation [2] of the domain block aftgfe equal, it becomes equivalent to transform (4) with DCT
application of any block support operations such as spatfsis vectors as the fixed blocks (such a transform, with
contraction, and is a vector of unit components. orthogonalisation with respect to the subspace spanned by the

1) Orthogonal projection:The subtraction of the DC com- first few DCT basis vectors, has been examined [65] [66]).
ponent of the domain block prior to scaling [3, ch. 8] [57] Although no explicit comparison has been made between the
(u,1) use of polynomial or DCT basis fixed blocks, in the absence

Mu =s (u - TE ) +ol, (2)  of experimental evidence the DCT basis blocks are likely to

be superior, since they are known to form an efficient basis for

(where(-,-) and|| - || are the inner product and derived normimage blocks and, unlike the polynomial bases, are mutually
of an appropriate inner product space - usualy creates orthogonal.

transformed domains which are orthogonal to the fixed block4) Multiple domains: A transform constructed by adding

1, with the desirable effect of decorrelating theand o jndependently scaledomainblocks has also been considered
coefficients. In addition, convergence at the decoder withinf@ ch. 10]. Computational tractability was achieved by creat-
fixed number of iterations may be guaranteed by imposifigy an orthogonal basis of the domain block set, representing
the additional restrictions of a quadtree range partition, ggch range by a scaling of as few basis vectors as possible.
o . . ) ) A variety of mappings using multiple fixed blocks as well
It is also possible, by an appropriate choice of spatial contractivity, toS multiple domain blocks, including domain blocks with no

achieve decoding by a single iteration of the transform [3, pp. 171-172] [49 A e : ;
pp. 56-60]. spatial contractivity, have also been investigated [67] [68] [69],




a linear combination of these blocks being selected viapasitions in the mask dense near the centre and progressively

technique known as matching pursuit. less dense further away, and using widely spaced domain
blocks together with a fine lattice in the vicinity of the best
IV. DOMAIN POOL SELECTION match in the coarse lattice [71].

The domain pool used in fractal compression is often The domain search may also be dispensed with entirely,

. . . . either by selecting each domain in a fixed position relative

referred to as a virtual codebook [52], in comparison with the . . .

L 0 the range [61] [62], or by placing the domain so that it

codebook of Vector Quantisation (VQ) [70]. It should be clear . : N

. : . : . ._contains the range, and the dominant edge is in the same

from this comparison that a suitable domain pool is crucial {Q, _.. L

. : : . L relative position in both blocks [65]. The search may also
efficient representation since, although increased fidelity m

be obtained by allowing searching over a larger set of domai restricted to a very small set about the range block [18].

. L9 . . . re is some evidence that local codebooks outperform global
there is a corresponding increase in the number of bits require ; R
: . ones [16, pg. 122], and that any domain searching is counter-
to specify the selected domain.

: : . pr ive in ar istortion sen 4] for the “order 2"
A bound|s| < spax is usually placed on the block |nten5|typ oductive in a rate distortion sense [64] for the “orde

; e . {folynomial transform described in Section I1I-B.3.
transform scaling coefficients in order to guarantee contréac-

tivity (see Section V-B), in which case a scaling coefficient
exceeding this bound is set equal to it prior to calculating ti@® Synthetic codebook

distance between the transformed domain and the range. In a significant variatioh from standard fractal coding, the

domain pool may be extracted from a low resolution image
A. Global domain pool approximation (which is coded independently), rather than

The simplest domain pool design provides a fixed domaffP™ the image itself [72] [73] [74]. Decoding does not require
pool for all range blocks in the image, or for a particular cladiération, and the collage error minimised at the encoder is also
of range blocks distributed throughout the image (eg. ranfjé true distortion.
blocks of one size in a quadtree partition). This design choice
is motivated by experiments indicating that the best domail Hybrid codebooks
for a particular range is not expected to be spatially close

- A coding scheme allowing range blocks to be represented
to that range to any significant degree [3, pp. 69-71] [27, pp. . . )
56-57] [50] (it is clear from the following section, howeves Sither as mappings from domain blocks or a fixed VQ code-

that there is some disagreement over this issue), book was found to perform significantly beftethan when

In the fixed square block or quadtree partitions, domaF eVvQ option was excluded, and slightly better than when
I fractal option was excluded [75].

blocks may be placed at intervals as small as one pixel. sirl
this results in an enormous domain pool which is slow to
search, larger domain increments are usually selected, typicg@ly Comparison
equal to the domain block width [3, ch. 3] [17] [27] or half the
domain block width [3, ch. 3, 4] [24]. Improved convergence ; . . :
. . . . . nd matching domain to be spatially close) plays an important
is also obtained with either of these increments [3, ch. ; : - : :
X . . le in the design of an efficient domain pool. While the

while the larger of the two corresponding domain pools w%‘s . . .

L . . egree to which this effect is present may be dependent on the
found to be superior in fidelity and compression ratio [27].

. ", ) : rparticular fractal coding scheme for which it is evaluated, this
In adaptive partitions the domain pool usually consists of t e . : .
es not adequately explain the extent of the disagreement in

larger blocks in the range pool [27], or larger blocks creat . i i
by the same partitioning mechanism [29] [41]. Zi:ctfsr%[rl:rgf(;ﬁse irsesfsg)ance [76, pp. 46-47, 75-77] for further

The question of domain locality (the tendency for a range

B. Local domain pool

A number of reseqrchers have noticed a tenden(;y for aFractaI coding is achieved by representing a signdly a
range block to be spatially close to the matching domain block antised representation of a contractive transfaiwhich
[48] [49], based on the observed tendency for distributions g h P h that the fixed boi £ T is i
spatial distances between range and matching domain blo {I osen suc at the fixed port O is close tox.
to be highly peaked at zero [52] [64] [71]. Motivated by thi€\t"oughxr may be recovered frof by the iterative process
observation, the domain pool for each range block may Eq?scrlb.ed prewou;ly, therg IS usuall.y. no simple expression
restricted to a region about the range block [24], or a spir re?Tt”]etgg:sstrc;fir:z g%a?rgsigecdoiﬁ'i:néz 2r81 daerrlizutlyth ?tr;d
search path may be followed outwards from the range blod P y P

position [48] [49]. More complicated alternatives include usin onstltuent_c_oeffICIents, s no'F usually possible to opt|m|§e
a domain position mask, centred at each range block, w ose coefficients to make the fixed point as close as possible

to a given signak.

"Note that this is the distance (measured in pixels) in the image support
between the range and domain block centres, restdhe distortion resulting 8This technique does not, strictly speaking, fall within the scope of fractal
from representing the range block by that particular domain block (the collageding, since the representation is not in any sense a fractal.
error for that range block). 9Encoder and decoder speeds were also improved.

V. ENCODING



A. The collage theorem for which reduced distortion is obtained in reconstruction
Since the the distortiorijer| (where ep = x — x7) [27], although smaller yalues Of ax provide_more rapid
introduced by the fractal approximation can usually not HegPhvergence on decoding [3, pg. 62]. A disadvantage of
directly optimised for these reasons, the standard approddf€2SiNgsmax IS @ corresponding increase in the cost or

is to optimiseT’ to minimise the collage errofec|| (where distortion in quantising the scaling coefficients.
ec = x—Tx), which is usually computationally tractable. The 1) Orthogonalisation: The introduction of an orthogonal-

collage theorem guarantees that;|| may be made small by isation operator to each domain block, making it orthogonal
finding T such that|ec|| is sufficiently smaf®. to the constant blocks, results in a transform which (given a

few additional constraints) may be shown to converge exactly
within a fixed number of iterations [3, ch. 8].

ler| < (1 —a) ec], 2) Mapping cycles:The interdependence between ranges
at one iteration of decoding and domains at the next may be
analysed in terms of “mapping cycles”, each of which consists
of an independent set of domain to range mappings [79] [80]
n{81]. The full image transform is convergent if each of its

The most common form of the collage theorem is

whereT is a contractive transform with Lipschitz factar(i.e.

|ITx —Ty| < a||x—1y]). In image coding terms this implies
that a transforn®’, for which the fixed poink is close to an
original imagex, may be found by designing the transfor :
T such that the “collageTx is close tox, achieved by independent cycles is convergent,

T o 3) Transform eigenvaluesWhen the transform is affine,
minimising the collage error individually for each range block. - "
o g ) L a necessary and sufficient condition for convergence of the
A similar bound is possible fazventual contractivity3, ch. 2],

while a tighter collage bound is possible by imposin Certaltransform sequence on decoding is that the spectral fédius
9 g P y imp 9 of the linear part be less than unity (equivalent to eventual

restrictions, consisting primarily of requiring DC SUbtraCtlonontractivity) [78] [79] [82] [83]. It is possible, in simple

in the block transform and setting the domain increment £ ; LT
. .cases, to determine the spectral radius in terms of the transform
be equal to the range block size [3, ch. 8] [57]. Despité ; . I
. . arameters, allowing analytic determination of convergence
the considerable improvement over the usual collage theorem . L . ,
. S requirements on the transform coefficients. While computation
bound, this bound is still rather loose [57].

o - . of the spectral radius is difficult for the general case, the
The majority of existing fractal coding schemes restfict o o . S
to be an affine transforn’x — Ax + b. where 4 is a probability of contractivity may be estimated by considering a
: X = ax i I§I,tatistical distribution for the eigenvalues, based on probability
linear transform (encapsulating the combined effects of t

. . : . ! istributions for the transform parameters [79].
spatial contractions, isometry operations, and scalings of the
individual domain to range mappings) ahds an offset vector
(composed of the offsets in each of the individual domain . Optimal encoding

range mappings) [3, ch. 7]. In this casg = (I — AJer, and  Ajthough the collage theorem currently forms the basis of
bounds* virtually all fractal coders, it does not result in an optimal
1+ AN ec| < ller] < (1 =AD" lec] Lmage representa‘;ion .giv.en the constraints imposed on the
ransform. Suboptimality is, amongst others, a result of op-
may be derived, in terms of an operator nojfr|| consistent timisation of individual block transforms with respect to the
with the vector norm [78], by noting that thafu|| — ||v|| | < domains in the original image, whereas only the fixed point
[lu —v| < |lul| + ||v]| for arbitrary vectorsu andv. domains are available during decoding. It has been shown
that optimal encoding is NP-hard [84], and that collage based
coding may produce a solution of arbitrary distance from the
optimal solution. Collage based encoding may, however, be
It is clearly desirable that the encoding process produggown to be optimal under certain restrictions [3, ch. 8] [47].
a transform for which the decoding sequence is guaranteequdating the scaling and offset coefficients after coding,
to converge; while necessary and sufficient conditions fgy re-optimising them with respect to domains extracted
convergence are known, their computation during coding igm the decoded image, was found to result in reduced
generally not feasible, posing a significant problem for @stortion on reconstruction [49], as was a scheme involving
practical encoder implementatiqn. Contractivity underdine multiple compression stages during each of which domains
norm may be guarante&y settings ... < 1 for each of the \yere extracted from the decoded image of the previous stage
block transforms of which the image transfofifis composed [16, pp. 81-82]. Improvements due to more computationally

[3, ch. 2] [6, pp. 207-210]. This restriction is sufficient but nojtensjve optimisation techniques have also been reported [85]
necessary for convergence, and empirical evidence indic _

that convergence is often achieved for larger values.qf,,

B. Convergence

101t is important to note that the collage erfpec || is usually smaller than VI. SEARCH STRATEGIES

the actual distortiorjler|| [76, pp. 87-88] [77], whereas the various forms of P : : ;
the collage theorem provide an upper bounderms ofthe collage error. The S|gn|f|cant CompUtatlonal requirements of the domain

LiNote that the upper bound is only valid whirt|| < 1. search resulted in lengthy coding times for early fractal
12Note however, that, since it is not additive, thep norm is not
appropriate for independent blockwise collage minimisation, which is usually 13The spectral radius(A) of linear transformA is the maximum absolute
performed under th& norm. value of the eigenvalues of.



compression algorithms. The design of efficient domain seardbmain for each range only being sought within the same
techniques has consequently been one the most active aass, or inspection of domains may be restricted to those with
of research in fractal coding, resulting in a wide variety deature values close to those of the range [34] [50].
solutions. The survey presented here is rather brief due to

space restrictions; the reader is referred to a comprehensiyepistance bounds

review [87] of these techniques for further details. Instead of locating likely matches, impossible matches may

. . be excluded by utilising features in terms of which distance
A. Invariant representation inequalities are available. Examples include inner products
The search for the best domain block for a particular ranggth a fixed set of vectors [6] which provide lower bounds
block is complicated by the requirement that the range matchgs distances between domain and range blocks, allowing
a transformedversion of a domain block; the problem ismany of the domains to be excluded from the actual distance

in fact to find for each range block, the domain block thajalculation, and features based on the distribution of energy
can bemadethe closest by an admissible transform. Given @ithin image blocks [94].

set of domain blocksl; and the admissible transformg,

parameterised by, the optimum domain block for rangec  Multiresolution search

block r results in a collage error ahing ; |[r — Mpd,||. ) i
The problem may be simplified by constructing an appropri- A réé search has been applied to a pyramid of progres-

ate invariant representation for each image block. Transforflvely coarser resolution domains, the search at each level

ing range and contracted domain blocks to this representatRJ9ressing in the region of the best match in the previous level

allows direct distance comparisons between them to determifial [96]- A similar technique, using collage errors at coarse

the best possible match [88]. resolutlons_ as lower bounds for those at finer resolutions, has
The standard invariant representation for the block intens@SC been implemented [15, ch. 7] [97].

transformt* is constructed by applying the orthogonal projec-

tion onto the orthogonal complement of the space spannedfyClustering

the fixed block terms, followed by normalisation. Alternative C|ustering of the domain blocks, under a distance measure

representatiors for the single constant block transform utilisenyariant to the block transforms, allows a fast search by

the DCT (or another orthogonal transform) of the vectqpcating the optimum cluster centre and then the optimum

followed by zeroing of the DC term and normalisation. Thigomain within that cluster. The Generalised Lloyd Algorithm

representation can decrease the time required for an efficigfitch. 9] [37] [47], the Pairwise Nearest Neighbour algorithm

domain search [15, ch. 6] [48] [91], and allows the utilisatio[pg] and Self-Organising Maps [99] have been utilised in

of a distance measure adapted to the properties of the hurfi@ construction of these clusters. The computational cost of

visual system [16, pp. 190-193] [48] [58]. clustering during encoding may be avoided by designing the
clusters on an initial training set rather than determining them
B. Domain pool reduction adaptively for each image [3, ch. 4] [99].

One of the simplest ways of decreasing coding time is to
decrease the size of the domain pool in order to decrease @eEfficient distance computation
number of domains to be searched, which is often achievedsince a significant fraction of the computational cost of

by a spatial constraint on the domain pool for each range, @ domain search lies in the actual calculation of distances
described in Section IV-B. Noting that a contractive mappinganveen domain and range blocks, the time required for the

requires a domain with a higher variance than the ranggarch may be reduced by improving the efficiency of these
to which it is mapped, domains with low variance may bggcylations.

excluded from the domain pool [92]. AIternative!y, the S:iomam A simple technique for decreasing search time ispthstial
pool may be pruned in order to exclude domains which haygsiance[70, pp. 479-480] method used in VQ. The efficiency
similar invariant representations [93] to other domains in th& ihis search is improved by constructing an invariant rep-
pool. resentation from Hadamard transform coefficients in zig-zag
scan order [48], since the energy packing property of this
C. Classification transform shifts most of the variance to the initial elements
Classification based search techniques often do not explid-the vector. A similar approach based on the Haar transform
itly utilise an invariant representation as formalised abovbas also been investigated [94].
but rely instead on features which are at least approximatelyEfficient computation of the inner products between domain
invariant to the transforms applied. Domain and range blocked range blocks can result in a significant improvement,
may either be classified into a fixed number of classes ance these calculations dominate the computational cost of the
cording to these features [3, ch. 3] [24] [25] [71], a matchingistance computations. These calculations may be efficiently
performed in the frequency domain by considering the calcu-
_14An appropriate invariant representation with respect to the block isomgstion of the inner products between a particular range block
tries is not possible, although invariaigaturesare [89] [90]. . . . .
15These alternatives are equivalent to the standard representation i@y all domain blocks as a convolution of the image with that
different basis. range block [100].



H. Nearest neighbour search the offset coefficients for neighbouring blocks, some form of

Efficient nearest neighbour search techniques utilise a pRsdictive coding is indicated [16, pp. 140-144], but presents
processing stage to arrange the set to be searched in an appi@stical difficulties for some range partitions [108].
priate data structure, usually a tree representing a hyperplan&uantisation optimisation has also been investigated for
induced partition of the search space, allowing the vector Rplynomial fixed block transforms [51] [63], and VQ of
the search set closest (the invariant representation of range B transform coefficients has been considered [49] for the
domain blocks is used) to the specified vector to be locatég@guency domain transform.
without actually examining every point in the set. Existing
techniques [101, ch. 2, 3] [102] have been applied to domain
searching [15, ch. 6] [16, pp. 179-200] [88] [103] [104], a8. Rate-distortion optimisation

have algorithms specifically designed for this purpose [94] An adaptive block coding technique may provide a number

[105] [106]. of options (eg. either splitting the block into smaller blocks
or adding additional fixed blocks into the block transform),
VIl. TRANSFORMREPRESENTATION each associated with a different cost in bits, for reducing
Domain positions, and any additional partition informatiothe distortion in representing a particular block. In this case
required in an adaptive partition, are represented by discréte appropriate choice is not the option providing the lowest
values and are not subjected to quantisation. There are usuditortion, but the option for which the ratio between the
compact methods of representing the range partition detailiscrease in distortion and the associated bit cost is the greatest.
in adaptive partitions such as quadtree or HV [3, ch. 3, 6]. Such rate-distortion optimisation has been applied in the
Efficient representation of the domain positions [16, pp. 114election between adaptive block transforms [58] [66], in the
121, 132-133] may be achieved by indexing in decreasim@nstruction of an optimum range partition [16, pp. 93-105]
order of probability of a match, as in the spiral search [4928] [66], in the selection of local domain search regions
described in Section IV-B, a Finite State approach based a6, pp. 114-123], in the selection of an optimum linear
the corresponding VQ technique [70, ch. 14] also having begombination of basis blocks [69], and in the decision whether a

considered [107]. mapping from a domain block is beneficial in a hybrid coding
scheme [65]. As a result of the encoding difficulties (described
A. Quantisation in Section V) necessitating the use of the collage theorem,

Although the distributions for the scaling and offset Coeﬁomplete rate-d_lsto_rtlon optimisation over al c_omponents of
the representation is, however, usually impractical.

ficients have been observed to be non-uniform, quantisation

is usually uniform [3, ch. 3] [17], but with the possibility of

cqmpensqtion for inefficiengy by subsequent er}tr_opy coding. VIII. D ECODING

Bit allocations® for the scaling and offset coefficients have

been respectively 2 and 6 [52], 5 and 8 [108], and betweenReconstruction of the encoded image is achieved by com-

2 and 4 for the scaling and between 3 and 8 for the offsgtiting the fixed point of the image transforifi from its

[9]. An allocation of 5 and 7 bits to the scaling and offseéncoded coefficients. Since the encoded representation of a

coefficients respectively provided the best performance intransform may be independent of the size of the encoded

comparison over a number of bit allocations [3, pp. 61-65].image, a form of interpolation is possible by reconstructing
Logarithmic [3, pg. 63] and pdf optimised [108] quanthe fixed point at a higher resolution than the encoded image

tisation of the scaling coefficients have been investigatgad, pg. 59].

the former not resulting in an improvement over uniform

guantisation, with which the latter was not compared. Since the

scaling coefficients are often rather coarsely quantised, there Standard decoding

is a significant advantage in calculating collage errors for each _ o

domain block using quantised transform coefficients [27, pg, Réconstruction of the fractal coded approximation of a

45] [108], although this may be difficult to achieve for Som§|gnal is theoretically based on Banach'’s fixed point thgorer_n

of the fast domain search methods [15, ch. 6]. Wh|c_h ggarantees that th.e sequence constructeq by thg !teranve
It has been observed that the standard block transform (wiftRPlication of a contractive transforifi to an arbitrary initial

out DC subtractioH) results in correlated scaling and offsefléMentxo of a complete metric space converges to the fixed

coefficients [9] [109]. Alternative responses to this observatidPiNt Xz = li,—.oc 7"xo of that transform.

have been VQ of combined scaling and offset coefficients When the transforrif’ is affine, withT'x = Ax+b, the fixed

[109] [110], and linear prediction of the offset from the scalin§Cint may, in principle, be expressed 8% = (I — A)~'b

[9]. Since there is usually also some correlation betwednll — Al # 0 (equivalent to the condition thatl has no
eigenvalues equal to 1). If the spectral radiyfsl) < 1, a
16Constant scaling coefficients fixed at 0.50 [53] and 0.75 [16, pp. 156-15%aylor series expansion of the ter(d — A)~! provides an
have also been used, and the scaling coefficients have been restricted t ; wati i ine
5et{0.0.0.5, 1.0} in a hybrid schemeg[lg]. ‘hﬁ'ﬁérnatl\zle derivation of the reco_nstruct|on senes = b +
1"The same transform with DC subtraction does not result in a significarf%b + A%b + ... resulting from iterated application of the
correlation between these coefficients [108]. transformT" to an initial zero vector.



B. Successive correction decoding IX. WAVELET ANALYSIS

Improved decoding speed has been achieved by a successivig most significant recent development in fractal coding
correction scheme (such as Gauss-Seidel [111]), updating egely,\y is the independent discovery by a number of researchers
range block in place as soon as the corresponding domain,{s, ‘mytiresolution analysis description of certain classes
mapPed to it, rather _than.mappmg the domains |_nto a te_mFl?r'fractal coding [77] [120] [121] [122]. This discovery has
rary image on each iteration [53] [112] [113]. This techniqURyt only resulted in improved fractal coders, but a better

was found to provide a further improvement when decoding,qerstanding of the mechanism underlying standard fractal

of range blocks was ordered so that regions containing t@@ding.
most highly utilised domain blocks were decoded first on each
iteration [112] [114].

A. Mappings between wavelet subtrees
C. Hierarchical decoding PPINg

If the domain increment is equal to the range block size, alf the domain increment is equal to the domain block size,

PIFS may be iteratively decoded to a minimum-length vectéllndo_I subject to a fe(\j/v additbional restrr:cti;)ns [3’ pg.d95], theg? isk
in which each range block consists of a single pixel. Give Irect correspondence between the domain and range blocks

a few additional restrictions [3, pg. 95], one may consid Yvithout DC component) in a signal, and subtrees rooted at
the domain to range mappings as providing a relationst nsecutive resolutions in the Haar wavelet transform of that
nal (essentially in an extension of the analysis described

between consecutive resolution approximations in the H Section VIII-C). The d ) : b
wavelet basis. This relationship provides an algorithm in whidf} Section ). The domain to range mappings may be
ressed as mappings between subtrees if the block transform

the range block dimensions are doubled at each step, until th DC. sub S d d . b bei
desired size is reached [3, ch. 5] [115] [116]; a considera %) wit subtraction Is used, a domain subtree being

computational saving is obtained over applying the stand .p.ped to a range subtree by scalllng the detail cogfﬁuer_ﬂs,
iterative method to full-sized blocks. shifting the entire subtree one resolution higher, and discarding

the highest resolution detail coefficients.
D. Pixel chaining The same analysis may be extended to images by consid-

If spatial contraction is achieved by subsampling, each pixgiing the non-standard [123, pp. 313-316] extension of the
(considered as part of a range block) has a single associdif@" basis to two-dimensions, in which subtrees in each of
reference pixel (in the corresponding domain block) frorf'® directional subbands are combined to form a composite
which it is mapped by the image transforfi Since the subt_ree (;eg Flgure 4). The square isometries may also be
reference pixel itself has an associated reference pixel, a ch@iplied within this framework [77].
of associated pixels may be constructed in this way. These
chains may be utilised in decoding by either tracing back
the path of influence of a pixel until a known pixel value
is encountered, or by utilising a segment of the chain long
enough to provide an acceptable approximation of the desired
pixel value [3, pp. 305-307] [16, pp. 207-210].

E. Postprocessing

Postprocessing in the form of smoothing along block bound-
aries has been found to be beneficial in reducing blocking
artifacts [3, pg. 59] [16, pp. 222-224].

F. Resolution independence

While “resolution independence” has been cited in the
popular technical press as one of the main advantages of fractal
compression [117], there is little evidence for the efficacy of H D
this technique. Subsampling an image to a reduced size, fractal
encoding it, and decoding at a |arger size has been report—'mj 4. Detall coefficient extrapolation by mappings between subtrees.
to produce results comparable to fractal coding of the original
image [21], although there is no indication that replacing the Encoding is achieved by locating the best matching domain
fractal interpolation stage by another form of interpolatiosubtree for each range subtree, in the sense that the MSE
would not produce comparable results. Comparisons witlistance between the range subtree and appropriately scaled
classical interpolation techniques indicate that, while fractdbmain subtree is minimised. Decoding within this framework
techniques result in more visually acceptable straight edgesachieved within a fixed number of iterations, since the
than linear interpolators, they are inferior in terms of the MSEorresponding linear operator is strictly lower triangular below
measure [118]. An alternative study [119] found slightly bettex few initial rows - convergence problems for small domain
results for the fractal technique in isolated cases, but a genengrements may be seen as a result of dependency loops from
superiority for the classical techniques. high to low resolution detail coefficients [124] [125].




10

B. General wavelet bases X. PERFORMANCECOMPARISONS

This interpretation of fractal coding naturally suggests the The greatest difficulty in comparing results of different
substitution of a smooth wavelet basis for the Haar baslessy coding algorithms is the absence of an objective dis-
Note, of course, that strict correspondence with standauttion measure which accurately reflects perceived distortion.
fractal coding breaks down under this extension, particularly further complication in the comparison of fractal coding
for biorthogonal bases, where spatial and transform domailyorithms is the scarcity of theoretical results to support
energies are not equal. Such an extension was found to reddesign choices; as a result, most stages of coder design are
blocking artifacts and improve the reconstruction MSE [7Hased on empirical studies, and the lack of consensus on
[120] [126]. important issues is probably largely a result of the dependence

A number of hybrid coders have been implemented, corhetween different aspects of fractal coder design referred to in
bining the subtree mapping of fractal coding with scaldhe introduction. Coder design by a “greedy algorithm” which
guantisation techniques of varying complexity [122] [124pptimises each stage separately is therefore bound to fail.
[127] [128]. Since the most widely used test image is the 8 bits/pixel

512 x 512 Lena image, PSNR (Peak Signal-to-Noise Ratio)
results published for coding of this image may be used as
C. Alternative schemes a basis for comparisd®, as displayed in Figures 6 and 7,
o between a variety of coding schemes. The wide range in per-
In contrast to the generalisation of the ussabtreepre- : o . .
formance is striking, a number of the more effective algorithms

diction described above, subbandprediction scheme in the offgring performance comparable to that of Shapiro’s EZW

non-standard image decomposition has also been prOpOSEgorithm [132], which is often used as a benchmark in the

\[;ﬁi?:]h[;feo]r.nisgz J?ﬁ%;ﬁgg?nnilfcgﬁﬁje Zér;agiislggrﬁecent literature. While it is difficult to identify the primary

the next lower resolution subband (see Figure 5). Since e Trzri]ﬁtors responsible for the superior performance of the better

a . : )
subband is predicted from thmpdedversion of the previous eﬁgonth.ms, a few generalltendenmes ma)./'be observed: _
subband, contractivity is not requiéd and the coding error  Partition The best algorithms tend to utilise quadtree parti-

may be evaluated at coding time. Low resolution subbands and tions or their wavelet domain equivalents, although
residual errors after block prediction were coded by Laplacian one of the irregular partition algorithms also offers
scalar quantisers [130], or by a sophisticated Lattice Vector superior performance. None of the non-right-angled
Quantisation technique [129]. partitions offer competitive performance.

Standard fractal coding of individual subbands (i.e. domain TransformThe majority° of the best algorithms either
and range blocks are extracted from the same subband) has ~ OPerate in the wavelet transform domain, or utilise
also been considered [131]. Block shapes within each subband frequency domain block transforms. _
were designed to reflect the correlation structure within that Transform RepresentatioAs might be expected, attention
subband, the blocks in the horizontal directional subbands to quantisation of transform parameters, and rate-
being horizontally elongated, for example. distortion optimisation strategies appear to play a

significant role in improving performance.

Hybrids Many of the best algorithms are constructed as
hybrids of fractal coding and alternative techniques.
In many of these cases, and in particular, for the
coder in Figure 7a, the role of the fractal part in
these hybrids is relatively small.

XI. CONCLUSIONS

Despite the considerable attention received by the technical
aspects of constructing a fractal representation of an image,
it is certainly not clear why a contractive transform should

be expected to provide an efficient representation for natural
. images [133]; most authors assume, without direct evidence,

H D 19Caution should be exercised in evaluating this comparison. First, there

are, unfortunately, different versions of the same image in common use, one

of which is significantly easier to code than the other. Second, PSNR is an

Fig. 5. Mappings between subbands (note that these are not constrainedifiliable measure of perceived image quality, and while its definition involves

the tree structure as in Figure 4) in the subband prediction algorithm [130fe dynamic range of an image, this value is usually taken as 255, despite
images such as Lena not utilising the full 8 bits available. Finally, the exclusion
of algorithms for which published results for this image were not available
makes a fair comparison across all schemes impossible.

18As a result, it is not, strictly speaking, fractal coding, despite the 2°The notable exception of Figure 6a was probably tested on the more
considerable similarities. easily coded Lena image.
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a) Irregular partition coder [33]. a) Hybrid wavelet significance map/fractal coder [128].
b) Multiple domain transform [69]. b) DCT domain block transform coder [49].
C) Quadtree partition coder with VQ of transform parametersc) Subband block prediction with PVQ [129].
[110]. d) Subband block prediction with scalar quantisation [130].
d) Irregular partition coder [32]. e) Hybrid wavelet scalar quantisation/fractal coder [124].

e) HV partition coder [3, ch. 6]. EZW EZW coder results [132].
f) Quadtree partition coder [3, ch. 3].

Q) Triangular partition coder [41].

h) Irregular partition coder [29]

i) Quadtree partition coder [21].

)] Fixed square block partition coder [17].
K) Original Jacquif 2-level coder [24].

) Triangular partition coder [35].

EZW EZW coder results [132].

Fig. 7. Comparison of the performance of fractal coding (hybrid coders) and
EZW for the 8 b/p512 x 512 Lena image.

Furthermore, fractal coding is less effective than transform
coding for the underlying models of transform coding, even
when these models are statistically self-similar [76] [138],
aln a later publication [52] Jacquin reports on a similar coder for whicre&d it appears as if the simpler zerotree recently introduced
PSNR of 31.4dB is achieved at a rate of 0.06 b/p; since the coder desciiheqvavelet scalar quantisation [132] is able to account for
ancl rﬂ?élag_gobfgﬁnfgrg%reog}g[24]' itis likely that a typographical errgfyjqy higher-order dependencies to those represented by the
underlying fractal coding model [125] [127, ch. 4].
Fig. 6. Comparison of the performance of fractal coding (pure fractal coders) While the performance comparisons presented here imply
and EZW for the 8 b/p12 x 512 Lena image. that the better fractal coders offer rate distortion performance
at least comparable with the current state of the art, it should
be noted that the majority of these algorithms are not classical

tha; ratural images exgi_bit si?nri]ficant _“s_elf-laffinity”. r'%'ﬂg(\j"fractal coders relying purely on image self-affinity, but incor-
ert eless, an un erstan Ing o the staﬂsfuca image orate the ability to exploit alternative forms of redundancy for
underlying fractal compression, together with associated fla

ich there is better evidence. It remains to be seen whether
has recently begun to emerge.

T . ) fractal compression captures any statistical property of natural
Motivation for the representation has been proposed in ter

; . ) X ) m?ages which can not be exploited as effectively by alternative
of comparisons with alternative techniques such as prEd'Ct'féechniques

coding [134], classified transform coding [135], and VQ [47,

ch. 5]. More direct statistical examination [76] [127, ch. 4] has

revealed the role played by the second order statistics of the

image model, a decaying power spectrum and the statisticallhe authors wish to thank the anonymous reviewers for

self-similarity of fractional Brownian motion models beingvaluable comments on the manuscript.

most significant [125]. There is evidence, however, that the

underlying model does not represent a particularly accurate

characterisation of natural images [136]. An optimised VQ

codebook generally outperforms the domain pool of a fractal

representation, and domain pools extracted frdifierent

images are generally no less effective than those extracted Processing operationsComputer Graphics and Image Processing
f vol. 4, pp. 1-24, Sept. 1975.

from thesameimage as the range blocks [47, ch. 5] [76] [137]. 3] . Fisher, ed. Fractal Image Compression: Theory and Application

New York, NY, USA: Springer-Verlag, 1995.

2lRepresenting a coherent description of the image statistics required fof4] M. Barnsley,Fractals Everywhere San Diego, CA, USA: Academic
fractal coding to be effective. Press, 1988.
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